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ABSTRACT

The impact of a warming climate on El Niño–Southern Oscillation (ENSO) is investigated in large-ensemble

simulations of the Community Earth System Model (CESM1). These simulations are forced by historical

emissions for the past and the RCP8.5-scenario emissions for future projections. The simulated variance of

the Niño-3.4 ENSO index increases from 1.48C2 in 1921–80 to 1.98C2 in 1981–2040 and 2.28C2 in 2041–2100.

The autocorrelation time scale of the index also increases, consistent with a narrowing of its spectral peak in

the 3–7-yr ENSO band, raising the possibility of greater seasonal to interannual predictability in the future.

Low-order linear inverse models (LIMs) fitted separately to the three 60-yr periods capture the CESM1

increase in ENSO variance and regularity. Remarkably, most of the increase can be attributed to the increase

in the 23-month damping time scale of a single damped oscillatory ENSO eigenmode of these LIMs by

5 months in 1981–2040 and 6 months in 2041–2100. These apparently robust projected increases may, how-

ever, be compromised by CESM1 biases in ENSO amplitude and damping time scale. An LIM fitted to the

1921–80 observations has an ENSO eigenmode with a much shorter 8-month damping time scale, similar to

that of several other eigenmodes. When the mode’s damping time scale is increased by 5 and 6 months in this

observational LIM, a much smaller increase of ENSO variance is obtained than in the CESM1 projections.

This may be because ENSO is not as dominated by a single ENSO eigenmode in reality as it is in the CESM1.

1. Introduction

As the dominant mode of tropical interannual vari-

ability with global teleconnections, El Niño–Southern
Oscillation (ENSO) not only is the leading source of

forecast skill on seasonal and interannual time scales but

also plays an important role in the global dynamics of

climate change. ENSO is associated with an irregular

oscillation of sea surface temperatures (SSTs) in the

tropical Indo-Pacific Ocean with periods in the 3–7-yr

range. Given its prominent role in climate variability, it

is of great interest to determine how ENSOmay change

in a warming climate.

Capotondi and Sardeshmukh (2017) and Aiken et al.

(2013) studied the change of ENSO in the observational

record and found a general increase of ENSO variability,

as well as of SST spectral power in the 3–7-yr band. Their

studies were limited by the length of their observational

record of about 50 years. They partly addressed this lim-

itation, when assessing the statistical significance of their

conclusions, by generating large synthetic dynamically

consistent samples using linear inverse models (LIMs)

fitted to different segments of the observational record.

To address the problem of limited sampling, the cli-

mate response is usually studied in ensembles of climate

model simulations with prescribed radiative forcing.

With regard to ENSO, while models are powerful tools
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for representing the complex interactions among trade

winds, atmospheric convection, and ocean dynamics—all

contributing to and modulating ENSO dynamics—the

delicate balance between damping and amplifying feed-

back processes differs across models. There has conse-

quently been no clear consensus on how ENSO amplitude

and frequencywill change under global warming (Cai et al.

2015; Collins et al. 2010).Out of the 17models of phase 3 of

the CoupledModel Intercomparison Project (CMIP3), for

instance, about half showed an increase and half a decrease

in ENSO variability (Collins et al. 2010).

Kim et al. (2014) argued that in models with a good

representation of ENSO feedbacks, ENSO variability

increases in the period before 2040, in which SSTs warm

faster in the eastern PacificOcean than over theMaritime

Continent region, but decreases thereafter. An increase

in variability was also claimed by one of the first studies of

this topic (Timmermann et al. 1999).

The emphasis in previous studies has generally been

more on changes in ENSO amplitude than on ENSO

period (its peak in the 3–7-yr band) and ENSO regularity

(the sharpness of that peak). The causes of changes in

specific ENSO properties have usually been sought in

terms of changes in the slowly evolving background state,

such as the weakening of the mean Walker circulation or

faster warming in the eastern equatorial Pacific and the

Maritime Continent than in the central Pacific (Cai et al.

2015, and references therein).

Changes in ENSO variability need not always be asso-

ciated with changes in the background state. Christensen

et al. (2017), for example, reported amarked improvement

in simulated ENSO variability by adding a stochastic

parameterization of unrepresented subgrid variability,

including that of atmospheric diabatic heating, to the

coupled NCAR–CCSM4 model. The stochastic parame-

terization affected the model variability, but not the

background state. This was explained by Berner et al.

(2018) using a simple conceptual damped linear oscillator

model to show how perturbations to its parameters could

alter ENSO variability without impacting themean. Such a

damped linear oscillator arguably provides the simplest

description of ENSO, and may be identified with the

damped oscillatory eigenmodes of a linear inverse model

fitted to observational data or climate model output.

The influential work of Penland and Sardeshmukh

(1995) showed that the evolution of observed tropical

SSTs is well captured by a low-order LIM (see also

Penland 1989; Penland and Magorian 1993). In partic-

ular, LIMs can capture the temporary growth of ENSO

through modal interference between nonorthogonal

eigenmodes (e.g., Alexander et al. 2008; Zanna 2012;

Gehne et al. 2014; Capotondi and Sardeshmukh 2017;

Newman and Sardeshmukh 2017). Newman et al. (2009)

showed that on seasonal to interannual scales the power

spectra of synthetic ENSO time series obtained from

LIM integrations generally compare better with the

observed spectrum than do spectra from the CMIP3

coupled models.

In this paper, we analyze the large-ensemble simulations

(LENS;Kay et al. 2015) of the 1921–2100 period generated

usingNCAR’s Community Earth SystemModel, version 1

(CESM1). These coupled simulations use historical forcing

for the past and the RCP8.5-scenario forcing for future

projections.We analyze themodeled long-term changes in

ENSO properties in the framework of the simple damped

linear oscillator considered by Berner et al. (2018). To this

end we fit low-order LIMs to the past and future simulated

periods [period 1 (P1): 1921–80; period 2 (P2): 1980–2040;

and period 3 (P3): 2040–2100] and quantify the changes not

only in the variance but also in the temporal autocorrela-

tion. The latter is directly linked to thewidth of the spectral

peak, or equivalently to the regularity of the oscillation.

This has implications for altering the predictability of in-

terannual variations in a warmer climate.

Specifically, our goal here is to address the following

questions:

1) How does ENSO change under global warming in

the CESM1 simulations?

2) Can changes in the ENSO eigenmode of the LIMs

fitted to the past and future simulation periods with

different mean temperatures explain the CESM1

changes in interannual tropical variability?

3) How well does CESM1 capture observed ENSO

variability?

We recognize that a single-model study cannot resolve

the ambiguity of the ENSO response to greenhouse

warming reported in the literature. Nonetheless, we

believe that using a large ensemble of simulations with a

single model can establish the response in that model

with greater statistical confidence, and using low-order

LIMs can help us understand it better.

The manuscript is organized as follows. Section 2 sum-

marizes the datasets and their preprocessing. Section 3

provides a brief overview of linear inverse modeling and

the simple damped linear oscillator used to interpret the

changes of ENSO in the CESM1 simulations (section 4).

A discussion and conclusions follow in section 5.

2. Data

TheCESM1LENS utilized here comprise an ensemble

of 33 separate simulations of the period 1920–2100 dif-

fering only in initial conditions. The simulations are

forced by historical emissions of carbon dioxide, ozone,

and aerosols in 1920–2005 and by the RCP8.5-scenario
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emissions from 2005 onward. Figure 1 shows the simu-

lated annually averaged global mean temperature. The

global mean temperature varies around 3.58C with no

pronounced trend until the 1970s or so, and rises mark-

edly thereafter. We additionally utilize a 900-yr control

simulation (CNTL) generated using the same model, but

forced with constant preindustrial emissions.

ENSO variability is often characterized by the time

series of a scalar index. The Niño-3.4 index is defined

as the equatorial SST anomaly averaged over the re-

gion 58–58N, 1708E–1208W (e.g., Trenberth 1997). We

remove the climate trend and seasonal cycle by remov-

ing the ensemble mean and applying a 3-month running-

mean filter before calculating the index. Alternatively, an

ENSO-index can be defined as the first principal com-

ponent (PC) of detrended SST anomalies in the tropical

belt, 208S and 208N (e.g., Penland and Sardeshmukh

1995). To ensure that the empirical orthogonal function

(EOF) basis has no climate change signal, we project the

LENS simulations onto theEOFsof the control simulation.

The time series of these two indices are shown in Fig. 2 for

five arbitrarily picked ensemble members. Both indices

pick up the same ENSO variations; indeed they are cor-

related at 0.95. We use the PC-based index from here on.

We characterize the observed ENSO variations using

monthly SSTs from the HadISST2 dataset, which spans

the period 1900–2010. These SSTs were preprocessed

analogously, except that a linear trend was removed and

the EOFs obtained from observed SSTs. The observa-

tional ENSO indices in the period 1920–2010 are also

shown in Fig. 2.

3. Methodology

a. Linear inverse model

Penland and Sardeshmukh (1995) showed that ob-

served tropical SST anomaly dynamics may be approxi-

mated by a linear stochastically forced system of the form

_x5Lx1Se , (1)

where x(t) is the time-evolving state variable, L the lin-

ear feedback matrix, and S the amplitude of the addi-

tive (i.e., state-independent) white-noise forcing e.

When L and S are obtained empirically, (1) is called a

‘‘linear inverse model’’ (LIM). Note that while (1) is

formally linear, nonlinear processes are not discarded,

but approximated as linear terms plus noise.

The statistics of any such system are fully represented

in the time-lag covariance matrix Ct (Penland 1989):

C
t
5 eLtC

0
, (2)

which can be used to estimate of feedback matrix as

FIG. 1. Time series of global mean temperature (8C) as modeled by 33 members of LENS

using CESM1 for the period 1921–2100. The ensemble-mean temperature is shown in black.

Gray shading indicates the years 1981–2040.
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L̂5
1

t
log(Ĉ

t
Ĉ21

0 ) , (3)

where t is the time lag, log is the matrix logarithm, and

the hat (̂�) denotes that the operator is estimated from

observational data or climate mode output. In practice,

Ĉt is estimated for a particular time lag t5 t0, so that the

validity of the underlying model assumptions can then

be tested for other lags via the so-called t test (Penland

and Sardeshmukh 1995).

An estimate of the noise covariance Q 5 SST can be

obtained from the Lyapunov equation (Gardiner 1983;

Farrell and Ioannou 1993; Penland andMatrosova 1994)

LC
0
1C

0
LT 1Q5 0 (4)

by inserting the estimated L̂ and Ĉ0 and solving for Q̂.

BecauseC0 andQ5SST arebydefinitionpositive-definite,

(4) can be satisfied only if L is a stable operator (i.e., if its

eigenvalues are either real and negative or come in com-

plex conjugate pairs with negative real parts). Each oscil-

latory eigenmode is complex and describes an evolving

structure that can be represented as a combination of

two patterns varying in quadrature. In other words, each

eigenmode has the form of a damped linear oscillator (see

below). Of special interest is the least damped oscillatory

mode with period and spatial patterns close to those as-

sociated with ENSO (Penland and Sardeshmukh 1995),

which we henceforth refer to as the ‘‘ENSO eigenmode.’’

While fitting a linear inverse model enables a mode-

by-mode comparison of different datasets, it does not

follow the system can be decomposed into a set of in-

dependent modes. Indeed, the power of the LIM lies in

its ability to capture the transient energy growth through

interference between nonorthogonal eigenmodes. The

ratio between energy at time t and initial time is given by

(Penland and Sardeshmukh 1995)

m(t)5
E(t)

E(0)
5

hx(t)x(t)i
hx(0)x(0)i

5
hG(t)x(0)G(t)x(0)i

hx(0)x(0)i

5
hx(0)GTG(t)x(0)i

hx(0)x(0)i ,

whereG(t)5 exp(Lt). SinceGTG is real, symmetric, and

positive-definite, all eigenvalues are real and positive.

The largest eigenvalues ofGTG for lag t gives the largest

FIG. 2. Time series of Niño-3.4 index (dashed) and ENSO-index based on the leading tropical

principal component (PC; solid) for five arbitrarily picked LENS members (colored lines).

Curves lie often on top of each other, since the time series are correlated at 0.95. The time series

are vertically displaced for easy viewing. Horizontal lines denote the standard deviation and

gray shading indicates the years 1981–2040. Time series of observed Niño-3.4 and ENSO index

is given in black for the period 1921–2010.
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possible growth through modal interference and the as-

sociated left and right eigenvectors denote the optimal

initial and evolved structures.

b. The simple model of a linear damped harmonic
oscillator

We are interested here in relating the statistical

properties of a damped linear oscillator to the parame-

ters of the oscillator. The evolution of such an oscillator

forced by noise is governed by (1):

_x5Lx1Se ,

with linear feedback matrix

L5

�
2n v

2v 2n

�
. (5)

The state vector x comprises the amplitude and rate of

displacement of an oscillator with frequency v and

damping rate n. In order for L to be stable, the damping

rate has to be positive, n. 0.We assume for simplicity that

the noise forcing of the two oscillator components is un-

correlated and has the same amplitude, S 5 [s«, 0j0, s«].

As discussed by Berner et al. (2018; see also references

therein) the zero-lag covariance of the two-component

state vector x in such a systemmay be obtained using (4) as

C
0
5

0
BBB@

s2
«

2n
0

0
s2
«

2n

1
CCCA . (6)

Hence an increase in the noise forcing amplitude increases

the variance of x. Interestingly, the covarianceC0 does not

depend upon the oscillator frequency. This means that a

change in frequency does not change the variance. On the

other hand, the temporal autocorrelation

C
t
C21

0 5 eLt (7)

is independent of the noise amplitude s«. Thus a change

in the strength of the forcing changes the autocovariance

but not the autocorrelation of the damped oscillator. Of

particular interest is the decorrelation (or e-folding)

time td at which the autocorrelation decays to 1/e. For

our simple model the decorrelation time scale is simply

t
d
521/n , (8)

which is a function of the damping rate but not on the

frequency.

According to the Wiener–Khinchin theorem (e.g.,

Gardiner 1983), the power spectrum [or power spectral

density (PSD)] normalized by the variance is the Fourier

transform of the autocorrelation function. This theorem

holds for a wide range of so-called wide-sense-stationary

random processes, including the physical system inves-

tigated here. Consequently, a change in the temporal

autocorrelation translates directly to a change in the

(normalized) spectrum, and vice versa.

The spectral matrix of a system given by (1) is given as

(Gardiner 1983)

S(f )5
1

2p
(L1 if )21Q(LT 2 if )21 , (9)

where f is the frequency variable. For our simple system,

(1) and (5), the spectrum of each component simplifies to

P(f )5
s2
«

n2 1 (v6 f )2
. (10)

From (10) we see that the spectrum has a maximum at

f5 v and the spectral width is a function of the damping

rate n. The larger the damping rate, the broader and less-

peaked is the spectrum.

These simple considerations motivate us to use not only

the variance but also the autocorrelation (or alternatively

power spectral density) to characterize and interpret the

changes ofENSOvariability in response to globalwarming.

4. Results

a. Variance and autocorrelation of the ENSO index

Even a casual inspection of the ENSO time series in

Fig. 2 suggests that it is nonstationary. Both frequency

and amplitude appear to increase with time. To quantify

these changes we divide the simulations into three time

periods of 60 years each. P1 covers the years 1921–80, P2

the years 1981–2040 (gray shading), and P3 the years

2041–2100. This choice was made so that in the first

period the global mean temperature has no pronounced

trend (Fig. 1), and also so that all three periods have the

same number of years.

Guided by the simple oscillator model, the variance

and autocorrelation of the ENSO index were computed.

The temporal variance averaged across all ensemble

members increases from 1.48C2 in the first 60 years to 1.9

and 2.28C2 in the subsequent 60-yr periods (Fig. 3,

Table 1). According to an F test, these differences are

significant at the 95% confidence level, even if the sam-

ples are made independent and identically distributed

(iid) by only using every 48th sample to account for

temporal correlations. While the shift in the variance is

pronounced, the width of the probability distribution of

the variance obtained in different ensemble members
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(Fig. 3b) points to large uncertainty. Note that the ob-

served variance of 0.78C2 in 1921–80 is smaller than that

of any LENS member in that period. We will return to

this issue in section 4d, which contains a detailed com-

parison of the model results with observations over the

historic period.

The autocorrelation functions for P1–P3 (Fig. 3c)

are indicative of oscillations with periods of 45–

49 months. The autocorrelation decays less rapidly in

the later periods, P2 and P3, indicating less damping

and more ENSO memory in P2 and P3 than in P1

(Fig. 3c). When fitting an exponential envelope to the

amplitude of the autocorrelation function (shading),

we can determine the decorrelation time as time

where this envelope intersects the 1/e 5 const curve

(dashed line). From the graph, we determine the de-

correlation times to 18 (P1), 27 (P2), and 34 (P3)

months (Table 1). The LENS simulations thus indi-

cate that in a warming climate ENSO events will have

both greater amplitude and greater memory, with

implications for potentially greater predictability.

b. Spectra

To facilitate comparison with other studies, we also

present spectra in addition to autocorrelation functions.

FIG. 3. (a) Distribution of ENSO-index for 33 ensemble members for time periods 1921–80 (blue), 1981–2040 (green), and 2041–2100

(red). (b)Distribution of the variance of the ENSO-index (8C2). Themean variance for each time period is given by the thick vertical lines.

The observed variance for the period 1921–80 is given as a black dashed line. (c) Autocorrelation function as a function of lag (months) for

each member (thin lines). Mean autocorrelation function averaged over all members is given by the thick solid lines. Shading denotes the

envelope of decay in the autocorrelation amplitude. The decorrelation time after which the autocorrelation of the amplitude has decayed

to 1/e (dashed line) is given as the intersect between the envelope and dashed curve. (d)–(f) As in (a)–(c), but for 5000 realizations of an

LIM fitted to LENS data for the time periods 1921–80 (blue), 1981–2040 (green), and 2041–2100 (red). In (f), only 33 individual auto-

correlation functions (out of 5000) are plotted.

TABLE 1. Variance and decorrelation time of ensemble-mean

ENSO index for periods 1921–80, 1981–2040, and 2041–2100 as

well as for observations. Boldface numbers indicate mutually sig-

nificant differences in variance at the 95% confidence level ac-

cording to an F test.

1921–80 1981–2040 2041–2100 Obs

Variance (8C2) 1.4 1.9 2.2 0.7

Decorrelation (months) 18 27 34 8
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To this end we computed the power spectral density

(PSD) not as the Fourier-transformed autocorrelation

function but directly from the squared Fourier coeffi-

cient of the time series obtained using Welch’s perio-

dogram method (which is included the Matlab software

package).

The spectra are characterized by a distinct peak in the

3–7-yr ENSO band (Fig. 4). Note that our preprocessing

of the data filters out variability on the longest time scales

(through detrending) as well as the annual cycle. The

mean spectrum averaged over all ensemble members

shows sharper peaks in P2 and P3, with spectral densities

of 110 and 1508C2cpm compared to 658C2cpm in P1

(where cpm is cycles per month).

The uncertainty in the power spectral density is indi-

cated by the standard deviation across all ensemble

members for each frequency (dark shading) and by the

maximum and minimum density range (light shading).

The uncertainty is large and roughly proportional to the

power (i.e., largest in the ENSO band). Intercomparisons

across P1–P3 show that themean power spectrum in each

period is within the sampling uncertainties in the other

periods. Note that a sample spectrum tracking the lower

bound at all frequencies has amuch smaller total variance

(given by the weighted area under the PSD curve) than

the total variance associated with the mean spectrum.

To focus on the uncertainty of ENSO, we plot histo-

grams of PSD across the entire frequency band between

3 and 7 years. The PSD distributions are all positively

skewed toward high spectral densities (Fig. 5a). The

means for P2 and P3 are higher than for P1 and the right

tail is much heavier. We note that the change from P1 to

P2 is more pronounced than from P2 to P3, pointing to a

possible saturation effect. The LENS results suggest that

FIG. 4. Power spectral density (PSD) of the ENSO index for the time periods (a) 1921–80 (blue), (b) 1981–2040 (green), and (c) 2041–

2100 (red). Colored lines denote ensemble-mean spectra and black line the PSDof the observedENSO index for the period 1921–80.Dark

and light shading denote the standard deviation and extremes of ensemble member spectra as function of frequency. The ENSO band

defined as period range between 3 and 7 years is shown as light green shading. The top axis indicates period (yr) and the bottom axis

frequency (cycles per month). (d)–(f) As in (a)–(c), but for 5000 realizations of an LIM fitted to climate model data for the three periods.

The PSD of LIM and climate model are denoted by the dashed and solid lines, respectively.
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the ENSO amplitudes in the future will be on average

larger than in the past.

c. Realizations from linear inverse models

Previous studies have argued that a linear inverse

model is able to capture observed interannual variability

in the tropics and can be used to make predictions on

this time scale (e.g., Penland and Sardeshmukh 1995;

Newman et al. 2009; Capotondi and Sardeshmukh 2017).

Here, we fit a linear inverse model to the three consec-

utive 60-yr periods, P1–P3, to address the following

questions:

d Are LIMs able to capture changing ENSO variability

in a warming climate?
d Can we use the linear inverse model to increase the

signal-to-noise ratio by effectively increasing sample

sizes through long integrations that are dynamically

consistent with the ENSO dynamics in each 60-yr

simulation period?

d Can we use the changing eigenmodes of the LIMs

fitted to the different 60-yr periods to clarify the na-

ture of the changing ENSO dynamics in a warming

climate?

The LIM feedback matrix L is derived from the co-

variance matrix fitted to a particular lag t0. If the linear

approximation is valid, we expect there to be a range of

lags for which the LIM should capture the system’s be-

havior. This range is bounded on the lower end by the

time scale for which nonlinearities become important

and on the upper end by the lag for which sampling

errors dominate. We fitted LIMs for a range of time lags

between 1 and 12 months and confirmed that the results

were qualitatively similar. The following results are

obtained for a time lag of t0 5 3 months.

LIMs for each period were fitted and used to gener-

ate 5000-member ensembles of 60-yr integrations. The

agreement with the mean LENS spectra is overall ex-

cellent (Figs. 4d–f), confirming that the LIMs fitted to

FIG. 5. (a) Histograms of PSD in the ENSO band defined as period range between 3 and 7 years for the time periods 1921–80 (blue),

1981–2040 (green), and 2041–2100 (red). (b)–(d) As in (a), but with additional PSD from 5000 realizations of the LIM fitted to the

corresponding time period. (e) PSD of LIMs fitted to the three different time periods. (f) PSD of observations and LIM of observations in

ENSO band.
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different periods are indeed able to capture the changes

in tropical variability. On decadal time scales, the LIM

appears to overestimate the uncertainty, although this

could also be an artifact of the limited sample size of the

LENS. In the ENSO band, the agreement between the

LIM and LENS is excellent (Figs. 5b–d) and captures not

only the shift in the mean and variance, but also the

change in the skewness of the variance distribution. We

conclude that the LIM is able to capture ENSO vari-

ability in a warmer climate and can be used to increase

the signal-to-noise ratio in the power spectral density in

the ENSO band (Fig. 5e).

Next, we will investigate the eigenmodes of the linear

feedback matrix L fitted separately to P1–P3 to gain in-

sights into the mechanisms by which the ENSO dynamics

change. The real part of the least damped oscillatory

eigenmode (Fig. 6) is highly reminiscent of the ENSO

peak pattern (Penland and Sardeshmukh 1995; Gehne

et al. 2014). The spatial characteristics of this eigenmode

(both real and imaginary parts) in all three 60-yr pe-

riods closely resemble that obtained from the obser-

vations (Figs. 6g,h).

The real and imaginary parts of the complex conjugate

pair of eigenvalues l1,2 5 2n 6 iv indicate the e-folding

time td 5 21/n and frequency v of each eigenmode.

Scatterplots of e-folding times versus frequency for all

eigenvalues (Fig. 7a) show that besides the ENSO mode,

there are three other modes in the ENSO band, but with

much shorter (;5-month) e-folding times. The ENSO

mode has periods of 48, 50, and 51 months in P1, P2, and

FIG. 6. (left) Real and (right) imaginary parts of the least damped oscillatory eigenmode (or principal oscillation

pattern) corresponding to the mature phase of ENSO and of characteristic precursor pattern, respectively. The sign and

contour interval are arbitrary but are the same for all panels. Each eigenmode is obtained fromanLIMfitted to themodel

simulations for the time periods (a),(b) 1921–80, (c),(d) 1981–2040, and (e),(f) 2041–2100 and to (g),(h) observations.

Decorrelation time td and period T 5 2p/v given by corresponding eigenvalues are indicated above each row.
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P3 respectively. The associated e-folding time increases

from 23 months in P1 to 28 and 29 months in P2 and P3.

For the linear oscillator, this increase in the e-folding time

signifies an increase in variance, (6), as well as a narrowing

of the spectrum, (10). This is in qualitative agreement with

the behavior in the full climate model.

The observed ENSO mode has a period of 46 months

and e-folding time of 8 months (Fig. 7b). While the

modeled period is similar to the observed one, the de-

correlation time in P1 is with 23 months almost 4 times

as large as in the observations. This will be discussed in

further detail in the next section.

To see if the changes in the eigenvalue of the ENSO

mode are sufficient to explain the changes in ENSO dy-

namics quantitatively, we use the LIM fitted to P1 (1920–

81) but replace the eigenvalue for the ENSO mode with

that from the LIM fitted to P2 and P3, respectively. The

modified feedback matrix are recomputed as Lmod 5
VLmodV

21, where V is the matrix containing the right

eigenvectors of L andLmod is a modified diagonal matrix

of eigenvalues with modification only of the ENSO

complex conjugate eigenvalue pair.

As expected, the spectrum of the modified LIMs

(dash–dotted lines) have more power in the ENSO

band, although the peaks are slightly lower than those for

LIMs directly fitted to P2 and P3 (Figs. 8a,b). These re-

sults suggest that an increase from 23 to 28 months (from

P1 to P2) and from 23 to 29 months (from P1 to P3) in the

damping time scale of the single ENSOmode can by itself

explain almost all of the changes in the CESM1 spectra.

The temporal energy growth through modal-

interference of the nonorthogonal eigenmodes is depicted

by the ‘‘maximal amplification (MA) curve,’’ which is

given by largest eigenvalue ofGTG as function of the lag t

(see section 3). The curves indicate maximal growth for a

lag of 14–15 months in the climate simulations, but only

7 months for the observations (Fig. 9). Figure 9 also de-

picts the average error curves estimated as the trace of the

error covariance matrix he(t)eT(t)i 5 C(0) 2 G(t)C(0)

GT(t), normalized by the trace of the covariance (Penland

and Sardeshmukh 1995).

The time lag tc at which these MA curve falls below

the error energy curve gives an upper bound for the

predictability limit in the absence of noise. We see that

for observations this critical lag is 16 months, consistent

with the literature. For LENS in the period 1921–80, this

lag is with 32 months, roughly twice as long, which

amounts to an overestimation of ENSO predictability in

the climate model. For the future periods 1981–2040 and

2041–2100, tc increases to 43 and 46 months, which

amounts to an increase of the predictability horizon by

about 30%. This finding is consistent with our earlier

result showing an increase in the decorrelation time for

the future periods (Fig. 3c).

d. Comparison with observed ENSO-variability

This study focuses on the ENSO response to global

warming as projected by the CESM1 under the RCP8.5

emissions scenario. Themodel projects a clear increase in

ENSO variance and regularity, but this may be compro-

mised by its biases in ENSO amplitude and damping time

scale. To assess these biases, we computed an observed

ENSO index using SSTs from theHadISST2observations

analogously to the model (Fig. 2). The observed variance

FIG. 7. (a) Eigenvalues of the linear feedbackmatrix L fitted to the model simulations for the

time periods 1921–80 (blue), 1981–2040 (green), and 2041–2100 (red). The inverse of the real

part, td 521/n, indicative of the e-folding time of the associated eigenmode, is plotted against

the imaginary part, indicative of the frequency. The ENSO band defined as period range be-

tween 3 and 7 years is shown as light green shading. (b) As in (a), but with additional symbols

for LIM fitted to observations (black squares).
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of 0.78C2 is smaller than that of any LENS ensemble

member and the autocorrelation function also decays

faster to zero (Table 1, Figs. 3b,c).

When compared with the LENS for the historical

period, the observed spectrum has less power and a

broader spectral peak (Fig. 4a). As already discussed, we

cannot conclude that the observed spectrum is inconsis-

tent with the LENS spectrum at any specific frequency,

but the fact that the observed spectrum tracks the lower

bound of the sample spectra at all frequencies further

demonstrates that the total observed variance is outside

the range of the sample LENS variances (Figs. 3b,e).

AnLIMfitted to theHadISST2observations in periodP1

has an ENSO eigenmode very similar to that of the model

(Figs. 6g,h), but with amuch shorter 8-month e-folding time

scale than the 23-month time scale of the model’s ENSO

mode in P1 (Fig. 7b). This is consistent with the smaller

power and a broader peak in the observed spectrum

(Fig. 10a). The differences between the LIMs fitted to ob-

servations and LENS for the period 1920–81 is especially

evident in the ENSO band, where the LENS LIM is biased

toward higher power spectral densities (Fig. 5f).

While there is compelling evidence for inconsistencies

between the observations and the LENS for the histor-

ical period, we cannot overcome the inherent problem

of the limited sample size in observations and our results

have to be interpreted carefully. To illustrate this, we

subjectively picked the LENS ensemble member whose

spectrum in P1 is closest to the observed spectrum. An

LIM fitted to this single member still has too much

power in the ENSO band, although the discrepancy is

much smaller than when using all members (Figs. 10b,c).

The sensitivity of the CESM1 projected changes in

ENSO to its biases in ENSO dynamics and variability

may be gauged using our observational LIM. As already

noted, this LIM has an ENSO eigenmode with a much

shorter 8-month damping time scale than the 23-month

time scale of CESM1’s ENSO eigenmode. When this 8-

month damping time scale is increased by 5 and 6months,

reflecting CESM1’s projected 5-month increase from 23

to 28 months in P2 and 6-month increase from 23 to

29months in P3, respectively, this observational LIMalso

‘‘projects’’ an increase in ENSO variance and a narrower

FIG. 8. Power spectral density of modified LIM simulations (solid) where the ENSO mode in the LIM fitted to P1: 1921–2080 (blue

dashed) has been replaced with the ENSO mode for the LIM fitted to (a) P2: 1981–2040 and (b) P3: 2041–2100. The dashed lines denote

the spectrum of the unmodified LIMs (see Figs. 4d–f). Dark and light shading denote standard deviation and extremes of 5000 realizations

of the modified LIMs. (c) LIM fitted to observations (black dashed) and modified observational LIM (dash–dotted), where the damping

time of the observed ENSO mode has been modified with the differences in damping time P2 2 P1 (green) and P3 2 P1 (magenta).

FIG. 9. The maximum amplification (solid) and average error energy

growth curves (dashed) forLIMsfitted to observations (black) andmodel

simulations for 1921–80 (blue), 1981–2040 (green), and 2041–2100 (red).
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spectrum. However, these changes are muchweaker than

obtained in the CESM1 projections. This may be because

ENSO is not as dominated by a single ENSO eigenmode

in reality as it is in the CESM1, consistent with the fact

that its observed decay time scale of 8 months is much

closer to that of several other observational eigenmodes,

whereas in the CESM1 the 23-month time scale of the

eigenmode ismuch longer than that of other eigenmodes.

5. Conclusions

Given its dominant role in tropical interannual variability

and predictability, it is of great interest to determine how

ENSO responds to a warming climate.We addressed this

question here by analyzing a large ensemble of coupled

simulations of the 1921–2100 period generated using

NCAR’s Community Earth SystemModel (CESM1). To

quantify the changes in ENSO over this long 180-yr

simulation period, we focused on the changes in the

ENSO index for three subperiods of 60 years each: P1

(1921–80), P2 (1981–2040), and P3 (2041–2100).

According to this model, tropical variability will in-

crease as global temperatures rise. Specifically, the

model projects an increase of ENSO amplitude from

0.68C for P1 to 1.48C and 1.58C in P2 and P3 under the

RCP8.5 emissions scenario. An increase of ENSO am-

plitude with warming is consistent with some previous

studies (Timmermann et al. 1999; Kim et al. 2014; Cai

et al. 2015; Capotondi and Sardeshmukh 2017), but

there remains ambiguity (Collins et al. 2010). The tem-

poral autocorrelation time scale of ENSO also increases

with warming in this model, indicating increased system

memory. This is associated with a narrowing of the

spectral peak in the ENSO band, which points to an

increase in ENSO regularity. The CESM1 simulations

thus suggest potentially greater predictability of ENSO

events in a warmer climate. Considering its widespread

impact on characteristic patterns of rainfall and tempera-

ture with implications for flooding and drought especially

in vulnerable regions, increased ENSO predictability is

associated with considerable social and economic value.

Previous work has shown that linear inverse models

(LIMs) are good at capturing observed interannual

variability and predictability in the tropical belt

(Penland and Sardeshmukh 1995; Newman et al. 2009).

Here, we verify that LIMs are also able to capture

changes in tropical variability under global warming.

LIMs fitted separately to the 60-yr periods of P1–P3

capture the LENS spectra in those periods very well,

especially in the ENSO band.

The changes in the CESM1 spectra and memory can

be understood in terms of the changes in the eigenvalue

of the least damped oscillatory eigenmode (the ENSO

eigenmode) of the fitted LIMs. The increase in the decay

time of this ENSO eigenmode from 23 months in P1 to 28

and 29 months in P2 and P3 accounts for almost all of the

changes in the CESM1 spectra from P1 to P3. Since the

spectra are closely related to the autocorrelation function,

this also explains the increase in the memory of the au-

tocorrelation function. This is consistent with the statistics

of a stochastically forced simple damped linear oscillator,

for which an increase the e-folding decay time can be di-

rectly linked to an increase in variance and regularity.

Our study was performed with one particular climate

model, CESM1. It would be interesting to determine to

what degree our results carry over to other models, such

FIG. 10. (a) PSD of the ENSO index for observations (solid) and for LIM fitted to observations (dashed). Dark and light shading denote

standard deviation and extremes of spectra from 5000 realizations of the LIM. (b) PSD of selected ensemble member of the LENS (blue)

and LIM fitted to this member (dashed). The member was chosen as the member for which the spectrum for the period 1921–80 is closest

to the observed spectrum. (c)Histograms of PSD in theENSOband defined as period range between 3 and 7 years for LIMof observations

(black) and LIM of selected member (blue).
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as those contributing to CMIP6. One can imagine that

different models will project different ENSO responses

to warming due to their different model biases. With

regard to CESM1, we showed here that while CESM1

captures the main characteristics of ENSO variability,

it overestimates the magnitude as well as the correla-

tion time (i.e., its ENSO spectral peak is too high and

too narrow). A separate LIM fitted to the 1921–80

observations has an ENSO eigenmode with a much

shorter 8-month damping time scale, comparable to

that of several other eigenmodes. When the mode’s

damping time scale in this observational LIM is in-

creased by 5 and 6 months, corresponding to its in-

crease in P2 and P3 in the CESM1 projections, a much

smaller increase of ENSO variance is obtained than

in the CESM1 projections. This may be because a

single ENSO eigenmode is not as dominant in reality

as it is in the CESM1. This is a subtle but important

model error, whose existence in other climate models

may similarly compromise changes of ENSO pro-

jected by those models. Reducing such model biases

in ENSO variability, perhaps by implementing sto-

chastic parameterizations of atmospheric diabatic

processes (Christensen et al. 2017; Berner et al. 2017),

will be necessary to build confidence in model pro-

jections of changes in ENSO with global warming.
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